GEOLOGICAL SURVEY CIRCULAR 271 A PRELIMINARY DETERMINATION OF THE AGE OF SOME URANIUM ORES OF THE COLORADO PLATEAUS BY THE LEAD-URANIUM METHOD # UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director GEOLOGICAL SURVEY CIRCULAR 271 # A PRELIMINARY DETERMINATION OF THE AGE OF SOME URANIUM ORES OF THE COLORADO PLATEAUS BY THE LEAD-URANIUM METHOD By L. R. Stieff, T. W. Stern, and R. G. Milkey This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission # CONTENTS | | | Page | F | age | |--|--|--|--|---------------------------------------| | Introdu
Sample
Physica
Age cal
C | ct ction. S. al constants and formulas | . 1
. 2
. 2
. 4
. 4
. 4
. 8
. 8 | Calculated ages—Continued Pb ²⁰⁷ /U ²³⁵ ages of 41 uranium ores of the Colorado Plateaus Pb ²⁰⁶ /U ages and Pb ²⁰⁷ /Pb ²⁰⁶ ratios of samples grouped by grade Pb ²⁰⁸ /U ages and Pb ²⁰⁷ /Pb ²⁰⁸ ratios of samples grouped by type Pb ²⁰⁶ /U ages and Pb ²⁰⁷ /Pb ²⁰⁶ ratios of samples grouped by stratigraphic position. Pb ²⁰⁶ /U ages and Pb ²⁰⁷ /Pb ²⁰⁶ ratios of samples grouped by mineralogic composition. Summary and conclusions. Literature cited. Unpublished reports. | 9
11
13
13
13
16
16 | | | I | LLUSTRA | TIONS | | | | | | T | age | | | | | • | agc | | Figure | Triangular diagram of lead isotopes Triangular diagram of common leads. Pb²⁶⁶/Pb²⁰⁸ as a function of U/Pb²⁰⁸. Pb²⁰⁷/Pb²⁰⁸ as a function of U²³⁵/Pb²⁰⁸. | 4/Pb.208 | ing location of samples used | 3
5
6
7
9
10 | | | | TABL | | | | | | | P | age | | Table | Total and corrected Pb²⁰⁷/U²³⁵ ages of Pb²⁰⁶/U ages and Pb²⁰⁷/Pb²⁰⁶ ratios | of 41 urani
of 41 uran | ne Colorado Plateausium ores of the Colorado Plateausnium ore samples of the Colorado Plateaus | 12
12 | | | 4. Pb ²⁰⁶ /U ages and Pb ²⁰⁷ /Pb ²⁰⁶ ratios | of 41 urar | nium ore samples of the Colorado Plateaus | 12 | | | 5. Pb ²⁰⁶ /U ages and Pb ²⁰⁷ /Pb ²⁰⁶ ratios | of 41 urar | nium ore samples of the Colorado Plateaus | 14 | | | | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 14 | | | grouped by mineralogic composition. | | dye calculations | 14
17 | | | | | for age calculations | 18 | | | | | and lead minerals of the Colorado Plateaus | 19 | | | | | 1 | | |--|--|--|---|--| # A PRELIMINARY DETERMINATION OF THE AGE OF SOME URANIUM ORES OF THE COLORADO PLATEAUS BY THE LEAD-URANIUM METHOD By L. R. Stieff, T. W. Stern, and R. G. Milkey #### ABSTRACT A study of the Pb 206 /U and Pb 207 /U 235 ages and the Pb 207 /Pb 206 ratios of the uranium ores of the Colorado Plateaus was undertaken by the Geological Survey on behalf of the U.S. Atomic Energy Commission because of its direct bearing on the origin of these ores. A preliminary treatment of the data for 41 ore samples containing more than O.1 percent uranium gives an average Pb²⁰⁶/U age of approximately 71 million years, an average Pb²⁰⁷/U²³⁵ age of about 82 million years, and an average Pb $^{20.7}/Pb$ $^{20.6}$ ratio equivalent to an age of 425 million years. At least part of the large discrepancy between the mean lead-uranium ages and the much less reliable ${\rm Pb}^{207}/{\rm Pb}^{206}$ ages is due to small systematic mass spectrometric errors. The extreme sensitivity of the Pb²⁰⁷/Pb²⁰⁶ ratio to small mass spectrometric errors invalidates not only the Pb²⁰⁷/Pb²⁰⁶ ages but also the corrections for the presence of old radiogenic lead and the selective loss of radon which must be based in part on precise determinations of the Pb²⁰⁷/Pb²⁰⁶ ratio. Errors in the chemical analyses for lead and uranium introduce uncertainties in the mean $Pb^{20\,6}/U$ age of approximately \pm 3 million years. The small systematic mass spectrometric errors should not increase the mean $Pb^{20\,6}/U$ age by more than 3 million years. Better corrections for common lead and additional corrections for selective loss of uranium and the presence of old radiogenic lead should lower the mean $Pb^{20\,6}/U$ age by approximately 10 million years. If the entire $Pb^{20\,7}/Pb^{20\,6}$ ratio anomaly is assumed to be due to the selective loss of radon, an improbable assumption, the mean $Pb^{20\,6}/U$ age would increase approximately 10 million years. The data suggest that the calculated ages are close to the true age of the ores. From these calculated ages it is reasonable to assume that the uranium was introduced into the sediments not later than the late Cretaceous or early Tertiary (55 to 80 million years ago). This assumption differs markedly from the assumption that the present uranium deposits were formed in the Late Triassic and Late Jurassic sediments of the Colorado Plateaus (152 and 127 million years ago), during or soon after deposition of the sediments. Careful study is continuing in order to reduce the uncertainties in interpretation of both field and laboratory data so that a satisfactory hypothesis of origin of these ores may be definitely established. To place this laboratory study on a firmer basis, ages are being determined by the lead-uranium methods on many additional carefully selected samples of uraninite and other primary ore minerals. #### INTRODUCTION The immediate objective of the present study of the age of the uranium ores of the Colorado Plateaus by the lead-uranium methods has been to determine whether the uranium deposits in the Shinarump conglomerate are Late Triassic (152 million years) and those in the Morrison formation Late Jurassic (127 million years) in age (Holmes, 1946a, p. 145), as some of the field evidence suggests, or whether all the deposits are Late Cretaceous to early Tertiary (55 to 80 million years in age) as the available leaduranium age determinations indicate. No attempt has been made to set more precise age limits on the carnotite ores because of the uncertainties that accompany age determinations made on minerals that are probably secondary in occurrence. The uraninite specimens that have been found in some of the Triassic and Jurassic rocks, however, are not as susceptible as carnotite specimens to solution by ground waters, and the ages that have been determined for these uraninites are considered more reliable. This study of the age of the uranium ores of the Colorado Plateaus was begun in 1950 by the Geological Survey on behalf of the U.S. Atomic Energy Commission. The writers believe that the determination of the age of the ores of the plateaus is one of the most promising types of investigation directly related to the origin of the ore deposits in the sedimentary rocks of the plateaus. The Tertiary ages of Colorado Plateau ores published in works by Hess and Foshag (1927, p. 4), and Holmes (1931, p. 351), and the writers' preliminary work (Stieff, Girhard, and Stern, 1950, p. 40; Stieff and Stern, 1952, p. 707) did not agree with the ages implied by the widely accepted theory that the ore was deposited shortly after the enclosing Triassic and Jurassic sedimentary rocks were laid down (Hess, 1914, p. 687; Webber, 1947; and Fischer, 1950, p. 3). If even an approximate dating of the deposits can be made by laboratory methods, the approach to the problems of the source and the chemical and physical controls of the mineralizing solutions will be simplified. The clarification of these questions on the origin of the deposits has not only considerable scientific interest but also will lead to two immediate practical applications: (1) greater confidence can be placed in the estimates of the ultimate reserves of uranium ore on the Colorado Plateaus and in the selection of new areas for exploratory drilling; (2) more thorough evaluation can be made of the prospecting methods and geologic controls used to guide the drilling. The writers wish to express their appreciation not only to the many members of the Survey for their help but also to the Atomic Energy Commission's Division of Research and Division of Raw Materials for the support received. Without the isotopic analyses furnished by Dr. Roger F. Hibbs and his staff at the Mass AssayLaboratory, Carbide and Carbon Chemicals Co., Oak Ridge Tenn., this work would not have been possible. The mill-pulp samples used in this study were obtained through the courtesy of the United States Vanadium Co. ### SAMPLES The sampling of the uranium deposits of the Colorado Plateaus for age studies is a specialized problem. It requires not only that the ore specimens from each of the deposits in the different mineralized stratigraphic units must be representative, but also that the specimens must be essentially unaltered if the lead-uranium ages of the specimens are not to be much greater than the actual age of the ore. Obviously, the oxidized and altered near-surface ores now available on the plateaus offer little opportunity to collect specimens that will
satisfy both these requirements. The compromises that had to be made in fulfilling these conditions, however, have not been considered in the arithmetic averages that have been calculated for this preliminary report. For this reason, the averages that are presented are probably greater than the true age of the ore. The geographic and stratigraphic distribution of all but 2 of the 17 deposits included in this study are shown in figure 1. The deposits not plotted are the Rifle district, Garfield County, Colo., and the Temple Mountain district, Emery County, Utah. A list of the sample localities arranged according to the stratigraphic units in which the deposits occur, together with the type of sample, principle uranium-bearing minerals contained, and their Pb^{206}/U ages and their Pb^{207}/Pb^{206} ratios corrected only for common lead is shown in table 7 at the end of this report. In collecting samples for this age study, an effort wasmade to obtain as many different types of uranium ore as possible. The uraninite specimens were collected from the Happy Jack mine, San Juan County, Utah, and the Shinarump No. 1 claim, Seven Mile Canyon, Grand County, Utah, both in the Shinarump comglomerate of Triassic age. The oldest Jurassic ores were of the vanadiferous hydromica type ("roscoelite") collected from the Entrada sandstone in the vicinity of Placerville, San Miguel County, Colo. Also, a new uranium mineral (coffinite) now being described from the La Sal No. 2 mine, Mesa County, Colo., and an asphaltic ore containing uraninite from the Temple Mountain area, Emery County, Utah, were collected and analyzed. The remaining samples are typical of the disseminated type of carnotite ores and all except one (from the Monument No. 2 mine, Apache County, Ariz., in the Shinarump conglomerate) were collected from deposits in the Salt Wash sandstone member of the Morrison formation of Jurassic age. Nine mill-pulp samples representing a total of about 4,200 tons of carnotite ore from 7 different mines in the Uravan mineral belt were also studied. #### PHYSICAL CONSTANTS AND FORMULAS The physical constants and equations used in the age calculations on the ores of the plateaus are shown below. Radioactive decay schemes, physical constants, and age formulas. Decay schemes $$U^{238} \longrightarrow Pb^{206} + 8 He^4$$ $$U^{235} \longrightarrow Pb^{207} + 7 He^4$$ $$Th^{232} \longrightarrow Pb^{208} + 6 He^4$$ ¹Pb^{2O4} is not known to be produced by any natural radioactive decay series. # Physical constants t = 1.515 x 10⁴ log₁₀ (1 + 1.156 $$\frac{\text{Pb}^{206}}{\text{U}^{238}}$$) [t is in million years] t = 2.37 x 10³ log₁₀ (1 + 1.14 $\frac{\text{Pb}^{207}}{\text{U}^{235}}$) $\frac{\text{Pb}^{207}}{\text{Pb}^{206}} = \frac{1}{139.0} \begin{pmatrix} \lambda 235 \text{ t} \\ e & -1 \end{pmatrix}$ Figure 1. —Index map of part of the Colorado Plateaus showing location of samples used for age determinations. These constants are the same as those used by Wickman $(1939, p.5)^1$ in the preparation of his nomographs for the calculation of geologic age. These nomographs were used in the calculation of some of the ages given in this report. The most recent redetermination of the half-life of U^{235} by Fleming, Ghiorso, and Cunningham (1951, p. 967) does not differ significantly from the value proposed by Nier (1939a, p. 153) which Wickman used. In this report Pb^{206}/U ages instead of Pb^{206}/U^{238} ages were calculated because the correction of total U to U^{236} is much less than the chemical errors in the determination for uranium. It has been shown that the isotopic abundance of U^{236} for samples from many different sources does not differ significantly from the value 99.286 percent. #### AGE CALCULATIONS #### Corrections The calculation of the age of the uranium ores of the plateaus is subject to corrections for the following: - 1. Analytical errors. - 2. The presence of common lead in the ore. - 3. The presence of old radiogenic lead in the ore. - 4. The selective loss of certain radioactive daughter products such as radon. - 5. The loss of uranium and (or) lead due to alteration of the ore by ground waters. Analytical errors.—All samples were carefully ground and thoroughly mixed before they were analyzed. Samples containing more than 0.1 percent uranium were analyzed volumetrically. All samples were analyzed for lead colorimetrically (Milkey, 1952, p. 9-13) after extraction of the lead with dithizone. The results of duplicate volumetric analyses for uranium and colorimetric analyses for lead are usually reproducible to within 2 to 3 percent. For a sample whose Pb 206 /U age is 65 million years, these analytical chemical errors for the uranium and lead result in a maximum uncertainty of \pm 3 million years. The results of the quantitative analyses of the samples used for age determinations are given in table 8, p. 18. The limits of precision for the lead isotope analyses are calculated so that 95 percent of any new determinations will fall within the limits given. Known systematic mass spectrometric errors probably introduce uncertainties in accuracy of less than 1 percent in the reported isotopic analyses. The isotopic analyses of the lead (as the iodide) extracted from the ore are in table 9, p. 19. The Pb²⁰⁴/Pb²⁰⁸ ratio of many of the radiogenic leads, however, shows considerably greater variation than would be expected from the reported precision and accuracy (fig. 2). The direction of the variation is toward impossibly large amounts of ¹See page 16 for literature cited. ${\rm Pb}^{20\,4}$ relative to the ${\rm Pb}^{20\,8}$ in the samples as the percent abundance of ${\rm Pb}^{20\,6}$ increases. This type of impossibly high ${\rm Pb}^{20\,4}/{\rm Pb}^{20\,8}$ ratio clearly indicates the presence of small, previously unrecognized systematic mass spectrometric errors. The additional systematic error in the Pb²⁰⁴/Pb²⁰⁸ ratios of the radiogenic leads may be due partly to the inability of available mass spectrometers to resolve completely the smaller Pb²⁰⁴ and Pb²⁰⁸ spectrometer peaks from the much larger Pb²⁰⁶ peaks of these radiogenic leads. Similar but smaller percentage errors should be expected in the determination of Pb²⁰⁶/Pb²⁰⁷ ratios of the radiogenic leads. These errors result in abundances of Pb²⁰⁴, Pb²⁰⁷, and Pb²⁰⁸ slightly higher than their true values, abundances of Pb²⁰⁶ correspondingly lower, and an increase in the mean Pb²⁰⁶/U age of not more than approximately 3 million years. The isotopic data on the leads of the Colorado Plateaus (fig. 3) are plotted on the Pb²⁰⁶, Pb²⁰⁷, Pb²⁰⁸ plane of a tetrahedron which has Pb²⁰⁴, Pb²⁰⁶, Pb²⁰⁷, and Pb²⁰⁸ at its corners. The sum of the isotopic abundances of Pb²⁰⁶, Pb²⁰⁷, and Pb²⁰⁸ plotted in this way is 100 percent, and Pb²⁰⁴ does not appear. Pb²⁰⁴ has been deliberately omitted from figure 3 because of the large uncertainty involved in determining its abundance. Figure 3 shows, as does figure 2, the increasing effect of the small mass spectrometric errors as Pb²⁰⁶ becomes more abundant. Many of the samples containing more than 90 percent Pb²⁰⁶ are to the left of the compositional line connecting the average radiogenic Pb²⁰⁷/Pb²⁰⁶ ratio of the ores of the plateaus which fall within the small inscribed triangle. The analyses of samples that are plotted to the left of the average compositional line have the largest Pb²⁰⁷/Pb²⁰⁶ ratio anomalies. At least a part of the large anomaly in the radiogenic Pb²⁰⁷/Pb²⁰⁶ ratio seems to be due to systematic mass spectrometric errors. Until the amount of these errors can be determined, reliable Pb²⁰⁷/Pb²⁰⁶ ages for the uranium ores of the Colorado Plateaus cannot be made. For this reason Pb²⁰⁷/Pb²⁰⁶ ages are not included in this report. Quantitative corrections for the selective loss of radon or for the presence of old radiogenic lead depend solely on very accurate Pb²⁰⁷/Pb²⁰⁶ determinations. Therefore, detailed discussion of these corrections is not justified at this time. However, the mean Pb²⁰⁶/U age would not be expected to increase more than 3 million years as a result of these systematic errors. These ages, calculated to the nearest 5 million years, are presented. Common lead. —Almost all lead-uranium and lead-lead age calculations must include a correction for the presence of common lead in the samples because not all the Pb^{206} and Pb^{207} present was produced by the decay of the U^{238} and U^{235} in the sample. Common lead contains, besides relatively small amounts of Pb^{204} —the only isotope of lead which is not known to be the product of any radioactive decay series—varying amounts of Pb^{206} , Pb^{207} , and Pb^{208} in roughly the proportions of 2:2:5. It is probable that much of the Pb^{206} , Pb^{207} , and Pb^{208} in common lead was present at the time of the formation of the earth (Holmes, 1946b, p. 680; 1947, p. 27). Figure 2. -The effect of increased Pb²⁰⁶ on Pb²⁰⁴/Pb²⁰⁸. Figure 3. - Triangular diagram of lead isotopes. The quantitative effects of common lead corrections on the lead-uranium and lead-lead ages are a function of the Pb²⁰⁶/U, Pb²⁰⁷/U²³⁵, and Pb²⁰⁷/Pb²⁰⁶ ratios, the amount of common lead in the ore, and the known or assumed isotopic composition of the lead originally present (common lead plus variable amounts of old radiogenic lead). The lead-uranium ages are usually only moderately affected by the choice of the isotopic composition of the original lead even when a relatively large amount of original lead is present. On the other hand, any uncertainties in the isotopic composition of the original lead can result in large changes in the Pb²⁰⁷/Pb²⁰⁶ age. This is true even when only relatively small amounts of original lead are present in the sample. The range in isotopic composition of common lead is shown in figure 4, an enlargement of the small triangle shown in figure 3. The triangular points (fig. 4) represent the isotopic compositions of the common leads
analyzed by Nier (1938, p. 1573, and Nier, Thompson, and Murphey, 1941, p. 115). The circles represent the isotopic compositions of the common leads and a few of the ores of the Colorado Plateaus that contain large amounts of common lead. The circle with the inscribed triangle represents the isotopic composition of the common lead in the lead molybdate, wulfenite, and the chloride-vanadate of lead, vanadinite, from the Tucson Mountains, Ariz., analyzed by Nier (1938, p. 1573). We do not know whether there is any significance to the fact the vanadinite from the Tucson Mountains of Miocene age is on the composition line of the uranium and vanadium ores of the Colorado Plateaus apparently of early Tertiary(?) age, although the similarities in isotopic composition certainly suggest that all these samples are in some way genetically related. In any event, the composition of this lead from the Tucson Mountains was chosen for many of the age calculations because this lead contains less uranogenic lead than any other which could legitimately be considered. This lead, therefore, will give the greatest Pb206/U ages when used in the common-lead correction. In contrast to the variable Pb^{204}/Pb^{208} ratio for the ores containing large amounts of radiogenic lead, Figure 4. —Triangular diagram of common leads. the Pb 204 /Pb 208 ratio of the common leads from the Colorado Plateaus is almost constant and is approximately 0.02651. The relatively uniform Pb 204 /Pb 208 ratio of these common leads is due to the absence of thorium, even in very small amounts, in the ore, and to the relatively low abundance of Pb 208 in common leads which permits greater accuracy in the isotopic analysis of the lead. Thorium (Th²³²), the parent of radiogenic Pb²⁰⁸, has not been found within the sensitivity limit of the semiquantitative spectrographic determination, which is approximately 0.1 percent in the presence of 0.1 to 10 percent uranium. It is difficult to evaluate quantitatively the limits of sensitivity for thorium when uranium is above 10 percent; however, the thorium limit is known to be higher than 0.1 percent. Quantitative chemical analyses of uraninite samples from Happy Jack mine, San Juan County, Utah, and Shinarump No. 1 claim, Grand County, Utah, showed less than 0.01 percent thorium. An isotope dilution analysis of some 30-percent uranium ore from the La Sal No. 2 mine, Mesa County, Colo., showed that the sample contains less than 0.001 percent thorium (George Tilton, personal communication). The almost complete absence of thorium in the uranium ores may be due to the difference in the chemical behavior of thorium and uranium. This absence of thorium may also be due to the fact that these deposits are possibly related to pitchblende veins at depth, which usually contain only traces of thorium, rather than to average granitic rocks, which contain from 3 to 6 times more thorium than uranium. The customary practice in common-lead corrections is to use the amount of Pb^{204} in the sample that is being studied as an index of the amount of common lead to be deducted. However, in calculating the ages of the ores of the Colorado Plateaus, Pb^{208} was used for the three following reasons: The Pb 208 in the samples is due only to the presence of common lead and is not a result of the decay of thorium (Th 232). Pb^{208} is approximately 40 times as abundant as Pb^{204} and can be determined with considerably greater precision. The use of the Pb $^{20\,6}$ as an index of common lead yields ages which are greater than the ages obtained when Pb $^{20\,4}$ is used as the common lead index. This is in line with the general objective of calculating a maximum lead-uranium age for the ores of the plateaus. Additions of old radiogenic lead. —The variations (fig. 4, triangular points) in the abundance of Pb²⁰⁶, Pb²⁰⁷, and Pb²⁰⁸ in common lead that were analyzed by Nier (1938, p. 1573; Nier, Thompson, and Murphey, 1941, p. 115) were conclusively shown to be due to the additions of radiogenic lead (Holmes, 1946b, p. 680; 1947, p. 127). Although detailed corrections for the presence of old radiogenic lead cannot be made until the mass spectrometric errors are resolved, the maximum, though improbable, reduction in the mean Pb 206 /U age would not be more than 5 million years. Loss of daughter products. —An alternative explanation for the distribution of many of the points in figure 3 and the apparent presence of old radiogenic lead in the ores with a mean Pb^{207}/Pb^{206} age of 425 million years is the selective loss or migration of one or more of the daughter products in the U^{238} decay series. Wickman (1942, p. 465) theorized that a preferential loss by diffusion of radon over actinon, the radioactive noble gases, might be expected because of radon's greater half-life. (See p. 2.) Because of the uncertainty of the exact values for the radiogenic Pb^{207}/Pb^{206} ratios, no detailed correction for loss of radon was made. A maximum, although improbable, correction for loss of radon would increase the mean Pb^{206}/U age 10 million years, but the mean Pb^{207}/U^{235} age would remain unchanged. Loss of uranium. -It is the belief of the writers that, next to the corrections for common lead, the largest source of error in lead-uranium age determinations in many of the carnotite ores is the leaching by ground water of uranium rather than lead. The true age of samples corrected for loss of uranium will be younger than the calculated lead-uranium ages. In this preliminary treatment of the data, corrections were not made for the possible loss of uranium because of the difficulty of determining this factor quantitatively. There is abundant evidence on the plateaus, however, of the alteration and leaching of the ore bodies by surface and ground waters. Therefore, the mean Pb²⁰⁶/U ages that were calculated are probably older than the actual ages of the specimens. Our data confirm the fact discussed by Ellsworth (1932, p. 423) and Nier (1939b, p. 159) that often the apparent age of the alteration products in the immediate vicinity of the primary uranium minerals is greater than that of the primary minerals from which they were formed. The ages of the alteration products are apparently greater because under most natural environments uranyl salts are more soluble than the comparable lead salts. This results in an enrichment of lead. Phair and Levine's work (1952, p. 4) on the effect of sulfuric acid waters on partly oxidized but black pitchblende shows that in the course of leaching, UO₂, radium, and lead were residually concentrated relative to UO₃, and the amount of such concentration of both radium and lead was proportional to the amount of uranium leached. Additional evidence from the plateaus of the relatively greater mobility of uranium when compared to lead may be found in several analyses of recent carnotite coatings on joints and fractures which contain 40 to 60 percent uranium and less than 0.01 percent lead (Stieff, Girhard, and Stern, 1950, p. 30). Preliminary studies by Phoenix (1951, p. 9) of ground waters in the vicinity of some of the uranium deposits of the Colorado Plateaus showed that these waters are weakly alkaline bicarbonate solutions containing a significant amount of uranium. A possible explanation of the erratic ages of the lower-grade samples and the few samples with less than 0.1 percent uranium may be that they have lost disproportionately large amounts of uranium to percolating ground water. Ores of different grade, mineralogic composition, and uranium distribution from the plateaus will be studied in the laboratory by leaching with weakly alkaline solutions. Many of the events in the geochemical history of the uranium deposits of the plateaus, involving loss or addition of either uranium or lead, may be shown graphically by plotting the ratio of Pb206/ Pb²⁰⁸ against the ratio of U/Pb²⁰⁸ (fig. 5). Loss of uranium would move the plotted points horizontally to the left, the true age of the sample being less than the plotted one. The Pb206/Pb206 ratio corrected for the addition of old radiogenic lead moves the plotted points vertically downward. This movement also results in an age which is less than the plotted one. Radon loss would shift the points vertically upward and increase the age. A similar plot of the ratios of Pb207/Pb208 against the ratio of U^{235}/Pb^{206} (fig. 6) shows much the same thing except that there can be no radon loss in this system. As more detailed data are accumulated from individual deposits, it will be possible by means of similar graphs to determine the approximate amount of uranium that has been lost and composition of the lead originally present in the ore deposit. This information in addition to the data now available should show clearly whether radon loss is a significant process in the modification of the Pb²⁰⁷/Pb²⁰⁶ ages and whether old radiogenic lead was added to the ores at the time of their deposition. #### CALCULATED AGES # Pb²⁰⁶/U ages of 41 uranium ores of the Colorado Plateaus It is true, not only for the uranium ores of the Colorado Plateaus but also for any large group of samples used for lead-uranium age studies, that all the specimens will not give equally reliable ages. The best materials are those which are unaltered and which have a high UO content. As previously mentioned, in this preliminary determination of the age of the uranium in the ores of the plateaus, no direct consideration is given to the quality of the samples in the calculation of the arithmetic averages. The result of this uncritical grouping of all 41 samples studied is that the averages which are given below are probably higher than the actual age of the ore. Figure 5. -Pb²⁰⁶/Pb²⁰⁸ as a function of U/Pb²⁰⁸. A histogram (fig. 7) of the corrected Pb²⁰⁸/U ages for the 41 samples of ore containing more than 0.1 percent uranium shows a pronounced maximum in the 70-to
80-million-year interval. The first quartile, median, and third quartile are also shown because these measures will be used in tables 1 and 2 (see p. 12) to give some indication of the distribution of the ages that have been determined. The necessity for isotopic analyses and commonlead corrections is shown (table 1) by the decrease in the mean age of the samples from 270 million years for total lead to 68 million using the isotopic composition of the lead mineral nearest the deposit (best) from which the ore sample was taken. The wide range for both total lead and total Pb²⁰⁶ ages is shown by the fact that the mean age is greater than the third quartile. ## Pb²⁰⁷/U²³⁵ ages of 41 uranium ores of the Colorado Plateaus Most of the Pb²⁰⁷/U²³⁵ ages (table 2, p. 12) are greater than the Pb²⁰⁶/U ages because the systematic mass spectrometric errors result in apparent Pb²⁰⁷ abundances which are greater than the actual abundances of this isotope. The total Pb²⁰⁷/U²³⁵ age is greater than the total Pb/U age because samples containing large amounts of common lead contain a greater percentage of Pb $^{20\,7}$ than do samples of pure radiogenic lead. The similarity of the mean (best) lead and vanadinite Pb $^{20\,7}/\mathrm{U}^{23\,5}$ ages reflects the relatively small variations that have been found in the Pb $^{20\,7}/\mathrm{Pb}^{20\,8}$ ratios of the common leads of the plateaus. # Pb²⁰⁶/U ages and Pb²⁰⁷/Pb²⁰⁶ ratios of samples grouped by grade The tabulation of the samples according to grade (table 3, p. 12) shows a small difference in mean Pb²⁰⁶/U ages. Generally the lower grade uranium ores contain relatively larger amounts of common lead. The Pb²⁰⁶/U ages of this group, therefore, would be lowered the most by a better choice of the common lead used for the common lead correction. Also, this group would be most affected by a uniform loss of uranium due to leaching by ground waters. The lower Pb²⁰⁷/Pb²⁰⁶ ratio for samples containing 0.1 to 1.0 percent uranium may be due to a smaller radon loss, but more probably it reflects both the greater common lead correction and the greater accuracy of the mass spectrometer measurements. The inability of the mass spectrometer completely to resolve the Pb²⁰⁴, Pb²⁰⁷, and Pb²⁰⁸ peaks Figure 6. —Pb 207 /Pb 208 as a function of U 235 /Pb 208 . Figure 7. - Histogram of results of age calculations. from the Pb^{206} peak is shown by the larger Pb^{207}/Pb^{206} ratios in those samples containing both the largest amounts of Pb^{206} and uranium. # Pb²⁰⁶/U ages and Pb²⁰⁷/Pb²⁰⁶ ratios of samples grouped by type The largest spread in mean Pb²⁰⁶/U ages is found by grouping the samples into mill pulps and small specimens (table 4, p. 14). The mill-pulp samples were obtained from the ore-sampling plants of the U. S. Vanadium Co. Each sample is a split from about 235 tons or more of ore from a single ore body. The small samples are hand specimens especially selected in the mines for isotopic lead-uranium age studies. The greater mean Pb²⁰⁶/U ages of the large mill pulps compared with the small samples correspond to the greater ages of the samples which contain less than 1.0 percent uranium mentioned in the last paragraph. The grade of the mill pulps is between 0.18 and 0.49 percent uranium. Also, with the exception of the three Calamity mill pulps, more than 40.9 percent of the lead they contain is common lead. The greater age of the ores that lost uranium is shown by the inclusion in the mill-pulp group of one pulp sample from a surface deposit which was mined as an opencut. This pulp gave a Pb²⁰⁶/U age of 120 million years and the opencut showed abundant evidence of the selective loss of uranium by recent percolating ground waters. The remaining mill pulps might also be expected to show some effect of loss of uranium although they come from less exposed deposits and thus their ages would not be as great as the sample from the opencut. In addition, the mill pulps have lower Pb²⁰⁷/Pb²⁰⁶ ratios than the small samples. This may be due in part to the following facts: (1) they contain more common lead, (2) the mass spectrometric analyses are better in this range, and (3) these samples lost less radon and (or) received less old radiogenic lead. Table 1.—Pb/U and Pb206/U ages of 41 uranium ores of the Colorado Plateaus #### [In millions of years] | | Mean | lst quartile | Median | 3d quartile | |------------|------------------------|--------------|-----------------------|-------------| | Total Pb/U | 270
120
71
68 | 67.5 | 110
85
75
75 | . 90 | ¹ The isotopic composition of the lead in vanadinite was used to correct for common lead present. Analysis in Nier, 1938. Table 2.—Total and corrected Pb^{207}/U^{235} ages of 41 uranium ores of the Colorado Plateaus ### [In millions of years] | | Mean | lst quartile | Median | 3d quartile | |---|-----------------|---------------------|---------------------|-------------| | Total Pb ²⁰⁷ /U ²³⁵ 1
Radiogenic Pb ²⁰⁷ /U ²³⁵ (vanadinite) ² | 429
82
82 | 119
66.8
66.5 | 168
86.9
88.6 | | Table 3.—Pb.206/U ages and Pb207/Pb206 ratios of 41 uranium ore samples of the Colorado Plateaus grouped by grade of sample | Grade of sample
(percent uranium) | Number of samples | Mean Pb ²⁰⁶ /U
age in millions
of years ¹ | Mean
Pb ²⁰⁷ /Pb ²⁰⁶
ratio | |--------------------------------------|-------------------|---|---| | >10 | 16 | 68 | 0.0576 | | | 8 | 70 | .0568 | | | 17 | 75 | .0533 | ¹ The isotopic composition of the lead in vanadinite was used to correct for common lead present. Analysis in Nier, 1938. ¹Data on 40 samples. ²The isotopic composition of the lead in vanadinite was used to correct for common lead present. Analysis in Nier, 1938. # Pb²⁰⁶/U ages and Pb²⁰⁷/Pb²⁰⁶ ratios of samples grouped by stratigraphic position The mean Pb²⁰⁶/U ages of the samples tabulated according to the stratigraphic unit in which the deposits are found(table 5, p. 14) does not show any correlation with the age of the enclosing sediments. In spite of the uncertainty concerning the Pb²⁰⁷/Pb²⁰⁶ ratio, it is interesting that the mean ratios do not show any evidence of increasing as the age of the sediments increases. The variation of only 0.4 percent in the mean Pb²⁰⁷/Pb²⁰⁶ ratio of the ores of the Morrison and Shinarump suggests that the ores in both formations were deposited at the same time and (or) came from similar sources at depth. The Pb²⁰⁶/U and Pb²⁰⁷/Pb²⁰⁶ ratios ores from the Entrada sandstone are not very reliable because large common lead corrections were made. A common lead with an isotopic composition similar to the lead from a galena specimen taken at Placerville, Colo., results in much lower Pb²⁰⁷/Pb²⁰⁶ ratios for 2 of the 3 samples. An unsuspected relation between the deposits of argentiferous galena in the Pony Express limestone member of the Wanakah formation and the underlying uranium-bearing "roscoelite" ores in the Entrada sandstone of the Placerville area is very strongly suggested by the systematic changes in the isotopic composition of the lead from the two different types of ores. The composition of the Placerville galena (table 9, sample GS 5, p.19) is bracketed by the composition of the leads from the ores of the Bear Creek mine and adjacent Primus claim (table 9, samples GS 22 and 24, p. 19). This galena contains more radiogenic lead than any other galena whose isotopic composition has been published. The implication that the Placerville argentiferous galena deposit might also contain workable amounts of uranium should be carefully examined. # Pb206/U ages and Pb207/Pb206 ratios of samples grouped by mineralogic composition A tabulation of the samples according to the major uranium-bearing mineral present in the ore is given in table 6. (See p. 14.) The Pb²⁰⁶/U ages of the carnotite ores range from 20 to 140 million years. From the field relations of individual samples as well as their chemistry, the writers believe that the greater ages reflect selective loss of uranium. The lower ages of the carnotite ores, however, may be real and may result wholly or partly from actual differences in age of some parts of the deposits. Alteration of the early Tertiary primary ores and redeposition of some of the secondary carnotite at different times during the Tertiary should be considered. The ages of the vanadiferous hydromica ores are doubtful, and it cannot be stated at this time if the lower mean age is significant. Additional work on these ores is planned. An asphaltic ore containing uraninite from Temple Mountains gives a Pb²⁰/U age of 80 million years, and a black ore containing an undescribed uranium mineral from La Sal No. 2 mine gives a Pb²⁰⁶/U age of 90 million years. The writers believe that the age determinations which were made on the Happy Jack and Shinarump No. 1 uraninite specimens, 65 and 75 million years (Stieff and Stern, 1952, p. 707), are the most reliable that have been made on the uranium ores of the Colorado Plateaus. The mean Pb²⁰⁶/U age of 70 million years for the two uraninite samples of the Shinarump conglomerate is believed to be within 10 million years of the true age of the samples. The Happy Jack specimen had the highest specific gravity (9.1), was the freshest in appearance, and contained the smallest amounts of common lead. The anomalous Pb²⁰⁷/Pb ratio for this sample cannot be readily explained on the basis of a required radon loss of 5.5 percent. The measured loss of radon from the massive uraninite from the Happy Jack mine is less than 1.0 percent under atmospheric conditions. Although adequate Pb²⁰⁶/U²³⁶ ages for the end of the Triassic and Jurassic are not available, the beginning of the Tertiary has been dated by Holmes (1946a, p. 145) who
recalculated the Pb²⁰⁶/U²³⁸ age of two Colorado Front Range pitchblendes as 57.3 and 59.8 million years. Two additional Front Range pitchblendes which were analyzed in the Geological Survey laboratory give Pb²⁰⁶/U ages of 60 and 70 million years. The average age of the uraninite samples from the Shinarump conglomerate is 70 million years, and both these samples show slightly high Pb²⁰⁷/Pb²⁰⁶ ratios. If old radiogenic lead is partly responsible for the high Pb²⁰⁷/Pb²⁰⁶ ratios, the true ages of the Shinarump uraninites would probably be somewhat less than 65 million years. The similarity in age of the pitchblendes from sedimentary rocks in the Colorado Plateaus and in the vein deposits in the Colorado Front Range is striking. #### SUMMARY AND CONCLUSIONS The calculation of the age of the uranium ores of the Colorado Plateaus is subject to the following corrections: - 1. Analytical errors. - 2. The presence of common lead in the ore. - 3. The presence of old radiogenic lead in the ore. - 4. The migration of certain radioactive daughter products, such as radon. - 5. The loss of uranium due to alteration of the ore by ground waters. The analytical chemical errors result in an uncertainty in the mean Pb²⁰⁶/U age of approximately ±3 million years. However, the mean lead-uranium ages presented are given without limits because of the inability of the writers at this time to evaluate quantitatively several of the remaining corrections. These ages, therefore, were calculated so that any changes in them due to more probable common lead corrections, to the presence of old radiogenic lead, or to loss of uranium will only lower the mean age. The systematic mass spectrometric errors should not increase the mean Pb²⁰⁶/U age by more than 3 million years. An increase of approximately 10 million years in the mean Pb²⁰⁶/U age can be expected only if radon loss is demonstrated to have been Table 4.—Pb206/U ages and Pb207/Pb206 ratios of 41 uranium ore samples of the Colorado Plateaus grouped by type of sample | Type of sample | Number of samples | Mean Pb ²⁰⁶ /U
age in millions
of years ¹ | Mean
Pb ²⁰⁷ /Pb ²⁰⁶
ratio | |----------------------------------|-------------------|---|---| | Mill-pulp splits235 or more tons | | 96 | 0.0523 | | Small samples5 pounds or less | | 64 | .0566 | ¹ The isotopic composition of the lead in vanadinite was used to correct for common lead present. Analysis in Nier, 1938. Table 5.—Pb206/U ages and Pb207/Pb206 ratios of 41 uranium ore samples of the Colorado Plateaus grouped by stratigraphic position | Formation | Age of stratigraphic
unit in millions
of years ¹ | Number of | Mean Pb ²⁰⁶ /U
age in
millions of
years ² | Mean
Pb ²⁰⁷ /Pb ²⁰⁶
ratio | |--------------------|---|-----------|--|---| | Morrison formation | 127 | 34 | 72 | 0.0550 | | | 130-140 | 3 | 50 | 3.0627 | | | 152 | 4. | 73 | .0548 | Table 6.—Pb206/U ages and Pb207/Pb206 ratios of 41 uranium ore samples of the Colorado Plateaus grouped by mineralogic composition | Mineralogic composition | Number of samples | Mean Pb ²⁰⁶ /U
age in millions
of years ¹ | Mean
Pb ²⁰⁷ /Pb ²⁰⁶
ratio | |---|-------------------|---|---| | Carnotite Vanadiferous hydromica Undescribed uranium minerals Uraninite | 34 | 72 | 0.0552 | | | 3 | 50 | ² .0627 | | | 2 | 85 | .0568 | | | 2 | 70 | .0530 | ² Isotopic composition of the lead in vanadinite used to correct for common lead present. Analysis in Nier, 1938. This mean Pb²⁰⁷/Pb²⁰⁶ ratio is appreciably affected by the assumed isotopic composition of the common lead used because of the large percentage of common lead in the samples. ¹ The isotopic composition of the lead in vanadinite was used to correct for common lead present. Analysis in Nier, 1938. ² This mean Pb²⁰⁷/Pb²⁰⁶ ratio is appreciably affected by the assumed isotopic composition of the common lead used because of the large percentage of common lead in the samples. a major process on the plateaus and the only cause of the Pb^{207}/Pb^{206} ratio anomaly. The mean Pb²⁰⁶/U age after correction for common lead is 71 million years. The isotopic composition of the common lead used in obtaining this mean age was determined by Nier. A comparison of the common leads of the plateaus with Nier's analysis of vanadinite from the Tucson Mountains, Ariz., (Miocene age) showed that the latter common lead contains less radiogenic Pb²⁰⁶ and Pb²⁰⁷ than any of the common leads of the plateaus that were studied. These corrected ages will therefore be maximum ages and any further small improvements in common lead corrections will only lower the mean Pb²⁰⁶/U age of 71 million years. Although young Pb²⁰⁷/Pb²⁰⁶ ages are not reliable and therefore are not presented in this report. the partly corrected but still anomalous Pb207/Pb206 ratios are included because they may contain valuable information on the source of the ore-forming solutions and the geologic processes related to the history of the ore. These anomalous ratios are given without precision limits because of the difficulty of quantitatively evaluating the very significant but small mass spectrometric errors, the actual composition of the common lead in the ore, the presence of old radiogenic lead. and the migration of daughter products. If part of the anomalously high Pb²⁰⁷/Pb²⁰⁶ ratios are shown to be evidence for the addition of old radiogenic lead, then the source areas of the ore-bearing solutions from which the deposits of the plateaus were formed will probably be found at depth, and the lead-uranium and lead-lead ages will drop to approximately 65 million years. If, on the other hand, the high Pb 207/Pb 206 ratios are shown to be due to the selective loss of radon, the mean Pb²⁰⁶/U ages will increase to a maximum of approximately 82 million years. Of particular interest is the similarity of the mean Pb²⁰⁶/U ages (72 and 73 million years) and Pb²⁰⁷/Pb²⁰⁶ ratios (0.0550 and 0.0548) of the ores from deposits in sedimentary rocks of Late Triassic and Late Jurassic age. These rocks are thought to differ in age by about 30 million years, and the Late Jurassic rocks are believed to be about 130 million years old. The absence of any correlation between the age of the enclosing sedimentary rock and the calculated ages and ratios of the ores they contain not only suggests a single period of ore formation but also similar or perhaps common sources for both the uranium and the lead originally present in the ore. The age determinations made on the Happy Jack and Shinarump No. 1 uraninite specimens, 65 and 75 million years, are the most reliable that we have made on any uranium ore of the plateaus. Of the 2, the Happy Jack specimen had the highest specific gravity, was the freshest in appearance, and contained the smallest amounts of common lead. Its Pb²⁰⁶/U age of 65 million years is probably correct within approximately 5 million years. The age of the enclosing Late Triassic rocks, about 160 million years, is more than twice as great as the age of the ore these sedimentary rocks contain. This discrepancy of almost 100 million years is in striking contrast to the almost identical mean age of 60.5 million years of 4 early Tertiary Colorado Front Range pitchblende samples, 2 analyzed by Nier and 2 determined in the Geological Survey laboratory. If the true age of the ore is less than the highest mean Pb²⁰⁷/U²³⁵ age of 82 million years, and the writers believe that it is, two interpretations of the origin and history of the uranium deposits of the Colorado Plateaus can be made: - 1. Uranium was deposited either at the same time or shortly after the enclosing Jurassic and Triassic sedimentary rocks in which it is found were laid down, or the uranium was deposited in one of the overlying Cretaceous sediments. At the close of the Cretaceous or at the beginning of the Tertiary the uranium and the radiogenic lead that had been formed were taken into solution, and the uranium was eventually redeposited in about its present sites. The deficiency of radiogenic lead for a syngenetic ore indicates that most of the radiogenic lead formed before this Tertiary event could not have been redeposited in or near ore. The common lead, however, which was originally deposited in the sediments with the uranium was redeposited in the present sites. The selective removal of the radiogenic Pb²⁰⁶ and Pb²⁰⁷ isotopes, formed before the end of the Cretaceous, from the ore solutions poses an extremely difficult problem, the solution of which is not immediately apparent. During the period of dissection and erosion, the deposits were partly altered, partly leached, and partly redistributed by circulating ground waters. - 2. A simpler and more probable interpretation of the lead-isotope data is that at the close of the Cretaceous or the beginning of the Tertiary uranium, common lead, a little old radiogenic lead, vanadium, and other metals were introduced into the sediments of the plateaus. These metals probably had similar sources, or perhaps a common source, to be found at depth. The original uranium and vanadium ore minerals were probably oxides or mixtures of oxides. During the period of dissection and erosion, the deposits were partly altered, partly leached, and partly redistributed by circulating ground waters. The immediate objective of this age study of the uranium ores of the Colorado Plateaus was to determine whether these ores were deposited during the Triassic and Jurassic periods or whether all the deposits were
formed at the end of the Cretaceous or the beginning of the Tertiary period. An unequivocal answer cannot be given at this time, although the writers' data strongly suggest that the present deposits are of Late Cretaceous age or younger. Regardless of the final interpretation of the origin and history of these uranium deposits, it is certain that the conditions prevailing during the close of the Cretaceous and the beginning of the Tertiary must have had an important part in localizing the present deposits. The partial control of the ore solutions by both major and minor sedimentary features is easily demonstrated. The relations of the ore to the Late Cretaceous and early Tertiary intrusions of igneous rocks, movement of the salt, as well as to folding and faulting are not so clear, but perhaps the present reexamination of these possible relationships may show a connection between the regional structure and the ore deposits. Also, the possibility of development of the ore with depth might be considered, particularly an investigation of the Salt Wash sandstone member of the Morrison formation below the present "ore zone." If the ore solutions were introduced from below, it is possible that the potentialities of the Colorado Plateaus as a uraniferous province have merely been touched. #### LITERATURE CITED - Ellsworth, H. V., 1932, Rare-element minerals of Canada: Canada Dept. Mines, Geol. Survey, Econ. Geology, ser. 11, p. 243. - Fischer, R. P., 1950, Uranium-bearing sandstone deposits of the Colorado Plateau: Econ. Geology, v. 45, p. 1-11. - Fleming, E. H., Jr., Ghiorso, A., and Cunningham, B. B., 1951, The specific alpha-activity of U²³⁵: Phys. Rev., v. 82, p. 967. - Hess, F. L., 1914, A hypothesis for the origin of the carnotite deposits of Colorado and Utah: Econ. Geology, v. 9, p. 675-688. - Hess, F. L., and Foshag, W. F., 1927, Crystalline carnotite from Utah: U. S. Natl. Mus. Proc., v. 72, art. 12, p. 1-6. - v. 72, art. 12, p. 1-6. Holmes, Arthur, 1931, Age of the earth: Natl. Research Council Bull. 80, p. 124-459. - _____1946a, The construction of the geological time-scale: Geol. Soc. Glasgow Trans., v. 21. pt. 1, p. 117-152. - ______1946b, An estimate of the age of the earth: Nature, v. 157, p. 680. - _____1947, A revised estimate on the age of the earth: Nature, v. 159, p. 127. - Keevil, N. B., 1939, The calculation of geological age: Am. Jour. Sci., 5th ser., v. 237, p. 195-214. - Nier, A. O., 1938, Variations in the relative abundances of the isotopes of common lead from various sources: Am. Chem. Soc. Jour., v. 60, p. 1571-1576. - 1939a, The isotopic constitution of uranium and the half-lives of the uranium isotopes—I: Phys. Rev., v. 55, p. 150-153. - 1939b, The isotopic constitution of radiogenic leads and the measurement of geologic time—II: Phys. Rev., v. 55, p. 153-163. - Nier, A. O., Thompson, R. W., and Mürphey, B. F., 1941, The isotopic constitution of lead and the measurement of geologic time—III: Phys. Rev., v. 60, p. 112-116 - Stieff, L. R., and Stern, T. W., 1952, The identification and lead-uranium age of uraninite from the Shinarump conglomerate: Science, v. 115, p. 706-708. - Wickman, F. E., 1939, Some graphs on the calculation of geological age: Sveriges geol. undersökning, Arsbok 33, p. 1-8. - 1942, On the emanating power and the measurement of geological time: Geol. fören. Stockholm Förh., Band 64, p. 465-476. # UNPUBLISHED REPORTS - Milkey, R. G., 1952, Methods of analysis used in the treatment of Colorado Plateau carnotite for age studies: U. S. Geol. Survey Trace Elements Inv. Rept. 245, p. 1-19. - Phair, George and Levine, Harry, 1952, Notes on the differential leaching of uranium, radium, and lead from pitchblende in H₂SO₄ solutions: U. S. Geol. Survey Trace Elements Inv. Rept. 262, p. 1-23. - Phoenix, D. A., 1951, Preliminary statement of the analyses of ground water from the Morrison formation, southwestern Colorado and southeastern Utah: U. S. Geol. Survey Trace Elements Mem. Rept. 137, p. 1-12. - Stieff, L. R., Girhard, M. N., and Stern, T. W., 1950, A preliminary report on methods of determining the age of Colorado Plateau carnotite: U. S. Geol. Survey Trace Elements Inv. Rept. 108, p. 24-47. - Webber, B. N., 1947, Geology and ore resources of uranium-vanadium depositional province of the Colorado Plateau region. [In files of Union Mines Development Corp.] Table 7.—Uranium ores of the Colorado Plateaus used for age calculations $^{\rm 1}$ | 53
54
55
55
22
88
84
95
95
95
95
95
95
95
95
95
95
95
95
95 | Shinarump Congl Shinarump No. 1 claim, Seven Mile Canyon, Grand County, Utah. Happy Jack mine, San Juan County, Utah Monument No. 2 mine, Apache County, Ariz Camp Bird No. 13 mine, Temple Mountain, Emery County, Utah. Entrada sands Bear Creek mine, San Miguel County, near Placerville, Colo. Vanadous No. 1 mine, San Miguel County, Colo. Primus claim, San Miguel County, Colo La Sal No. 2 mine, Mesa County, Colo Calamity No. 13 mine, Mesa County, Colo Calamity No. 13 mine, Mesa County, Colo Colo | Uraninite Carnotite type Asphaltic type tone ³ Vanadiferous hydromicado ation Carnotite type New uranium- vanadium mineral. Carnotite type dododo | 65
75
80
20
40
90
60
90
75
75
85
75
105 | .0501
.0570
.0560
.0578
.0603
.0692
.0537
.0570
.0523
.0617
.0601
.0599 | |--|---|--|---|--| | 22
28
28
24
20
35
34
35
34
35
34
35
34 | Grand County, Utah. Happy Jack mine, San Juan County, Utah Monument No. 2 mine, Apache County, Ariz Camp Bird No. 13 mine, Temple Mountain, Emery County, Utah. Entrada sands Bear Creek mine, San Miguel County, near Placerville, Colo. Vanadous No. 1 mine, San Miguel County, Colo. Primus claim, San Miguel County, Colo Morrison form Roc Creek mine, Montrose County, Colo La Sal No. 2 mine, Mesa County, Colo Calamity No. 13 | Carnotite type Asphaltic type Asphaltic type tone ³ Vanadiferous hydromicado ation Carnotite type New uranium- vanadium mineral. Carnotite type dododododo | 65
75
80
20
40
90
60
90
75
75
85
75
105 | | | 22
28
28
24
20
25
21
33
44
55
24 | Happy Jack mine, San Juan County, Utah Monument No. 2 mine, Apache County, Ariz Camp Bird No. 13 mine, Temple Mountain, Emery County, Utah. Entrada sands Bear Creek mine, San Miguel County, near Placerville, Colo. Vanadous No. 1 mine, San Miguel County, Colo. Primus claim, San Miguel County, Colo Morrison form Roc Creek mine, Montrose County, Colo La Sal No. 2 mine, Mesa County, Colo Calamity No. 13 mine, Mesa County, Colodododododo | Carnotite type Asphaltic type tone ³ Vanadiferous hydromicado ation Carnotite type New uranium vanadium mineral. Carnotite typedodododo | 75
80
20
40
90
60
90
75
75
85
75
105 | .0578
.0578
.0603
.0692
.0537
.0570
.0523
.0617
.0601
.0599 | | 22 28 24 20 55 21 55 24 55 24 | Camp Bird No. 13 mine, Temple Mountain, Emery County, Utah. Entrada sands Bear Creek mine, San Miguel County, near Placerville, Colo. Vanadous No. 1 mine, San Miguel County, Colo. Primus claim, San Miguel County, Colo Morrison form Roc Creek mine, Montrose County, Colo La Sal No. 2 mine, Mesa County, Colo Calamity No. 13 mine, Mesa County, Colodododododo | Asphaltic type tone ³ Vanadiferous hydromicado ation Carnotite type New uranium- vanadium mineral. Carnotite typedododododo | 80
20
40
90
60
90
75
75
85
75
105 | .0560
.0578
.0603
.0692
.0537
.0570
.0523
.0617
.0601
.0599 | | 22
28
24
20
55
21
33
44
55
24 | Emery County, Utah. Entrada sands Bear Creek mine, San Miguel County, near Placerville, Colo. Vanadous No. 1 mine, San Miguel County, Colo. Primus claim, San Miguel County, Colo Morrison form Roc Creek mine, Montrose County, Colo La Sal No. 2 mine, Mesa County, Colo Calamity No. 13 mine, Mesa County, Colodododododo | Vanadiferous hydromicado ation Carnotite type New uranium- vanadium mineral. Carnotite type dododododo | 20
40
90
60
90
75
75
85
75
105 | .0578
.0603
.0692
.0537
.0570
.0523
.0617
.0601
.0599 | | 28
24
20
55
21
33
44
55
24 | Bear Creek mine, San Miguel County, near Placerville, Colo. Vanadous No. 1 mine, San Miguel County, Colo. Primus claim, San Miguel County, Colo Morrison form Roc Creek mine, Montrose County, Colo La Sal No. 2 mine, Mesa County, Colo Calamity No. 13 mine, Mesa County, Colodododododo | Vanadiferous hydromicado ation Carnotite type New uranium- vanadium mineral. Carnotite type dodododo |
40
90
60
90
75
75
85
75
105 | .0603
.0692
.0537
.0570
.0523
.0617
.0601
.0599 | | 28
24
20
55
21
33
44
55
24 | Placerville, Colo. Vanadous No. 1 mine, San Miguel County, Colo. Primus claim, San Miguel County, Colo Morrison form Roc Creek mine, Montrose County, Colo La Sal No. 2 mine, Mesa County, Colo Calamity No. 13 mine, Mesa County, Colodododododo | hydromicado ation Carnotite type New uranium- vanadium mineral. Carnotite type dododododo | 40
90
60
90
75
75
85
75
105 | .0603
.0692
.0537
.0570
.0523
.0617
.0601 | | 20 55 21 53 54 55 24 | Vanadous No. 1 mine, San Miguel County, Colo. Primus claim, San Miguel County, Colo Morrison form Roc Creek mine, Montrose County, Colo La Sal No. 2 mine, Mesa County, Colo Calamity No. 13 mine, Mesa County, Colo dodododododo | carnotite type vanadium mineral. Carnotite type carnotite type dodododododo | 90
60
90
75
75
85
75
105 | .0692
.0537
.0570
.0523
.0617
.0601
.0599 | | 20
55
21
51
53
54 | Primus claim, San Miguel County, Colo Morrison form Roc Creek mine, Montrose County, Colo La Sal No. 2 mine, Mesa County, Colo Calamity No. 13 mine, Mesa County, Colodododododo | Carnotite type New uranium- vanadium mineral. Carnotite typedodododododo | 60
90
75
75
85
75
105 | .0537
.0570
.0523
.0617
.0601
.0599 | | 55
21
31
33
34
35
35
35
35
35
35
35
35
35
35
35
35
35 | Roc Creek mine, Montrose County, Colo La Sal No. 2 mine, Mesa County, Colo Calamity No. 13 mine, Mesa County, Colodododododo | Carnotite type New uranium- vanadium mineral. Carnotite typedodododododo | 90
75
75
85
75
105 | .0570
.0523
.0617
.0601
.0599 | | 55
21
31
33
34
35
35
35
35
35
35
35
35
35
35
35
35
35 | La Sal No. 2 mine, Mesa County, Colo | New uranium- vanadium mineral. Carnotite typedododododo | 90
75
75
85
75
105 | .0570
.0523
.0617
.0601
.0599 | | 21
31
33
34
35
24 | La Sal No. 2 mine, Mesa County, Colo | New uranium- vanadium mineral. Carnotite typedododododo | 90
75
75
85
75
105 | .0570
.0523
.0617
.0601
.0599 | | 51
53
54
55
52* | do | mineral. Carnotite typedododo | 75
85
75
105 | .0617
.0601
.0599
.0547 | | 51
53
54
55
52* | do | Carnotite type
do
do
do | 75
85
75
105 | .0617
.0601
.0599
.0547 | | 51
53
54
55
52* | do | do
do
do | 75
85
75
105 | .0617
.0601
.0599
.0547 | | 3
14
15
12* | do | do | 85
75
105 | .0601
.0599
.0547 | | 5
2* | do | do
do
do | 75
105 | .0547 | | 24 | do | do | 105 | .0547 | | | | | 100 | 0E40 | | 3 | ا ا | | | .0560 | | | do | do | 140 | .0608 | | .0
.8 | do | | | .0610
.0605 | | 14 | Celemity No. 21 mine Mess County Colo | ao | 75
90 | .0541 | | .O ⁴ | Calamity No. 21 mine, Mesa County, Colo
Calamity No. 27 mine, Mesa County, Colo | | 95 | .0526 | | 3-2 | Club mine, Montrose County, Colo | do | 75 | .0584 | | 1 | do | do | 1 60 1 | .0593 | | .2 | do | do | 70 | .0582 | | 84 | Mill No. 1 mine, Montrose County, Colo | | | .0531 | | -, _r | Colo. | do | | .0437 | | 7" | Coloradium mine, Montrose County, Colo | | | .0537 | | | Colo. | do | | .0467 | | | Bitter Creek mine, Montrose County, Colo. | do | 70 | .0525 | | | Jo Dandy mine, Montrose County, Colo | ao | 20
60 | •0653 | | 9-1 | Wild Steer mine. Montrose County, Colo | d0 | 70 | .0594
.0466 | | 9-2 | do | d0 | 20 | .0464 | | 4-1 | | | | .0607 | | 94 | Red Bird mine, Montrose County, Colo | do | 75 | .0518 | | 4 | Mine D mine, Montrose County, Colo | do | 100 | .0543 | | | Butterfly mine, Montrose County, Colo | do | <u> 35</u> | .0542 | | o" | Charles T No 2 mine See Micros County | do | | .0605 | | ~ | Colo. | | | .0521 | | 6 | | | | .0530 | | 6 | | | 30 | .0511 | | 0-2 | do | 3 - | 1 100 | .0502 | | 59949473 | 1
2
1
2
1 | Jo Dandy mine, Montrose County, Colo -2do | Jo Dandy mine, Montrose County, Colododododododododododododo | -1 Jo Dandy mine, Montrose County, Colodo | Table 7.—Uranium ores of the Colorado Plateaus used for age calculations 1—Continued | S | ample
no. | Location | Mineral | Formation | |----|--------------|--|--------------|---| | | | Common lead | | | | GS | 1 | Rifle mine, Garfield County, Colo | Galena | Entrada sandstone?. | | GS | 2 | Garfield mine, Garfield County Colo | do | Do. | | GS | 7 | Bitter Creek mine, Montrose County, Colo | Descloizite? | Salt Wash sandstone member of Morrison formation. | | GS | 9 | La Sal No. 1 mine, San Juan County, Utah | (?) | Do. | | GS | 67 | 1 | | Dakota sandstone. | | GS | 68 | Cougar mine, Lower group, San Miguel County, Colo. | do | Salt Wash sandstone member of Morrison formation. | | GS | 8 | Gap Claim, San Miguel County, Colo | (?) | Do. | | GS | 5 | Philadelphia Claim, Placerville,
San Miguel County, Colo. | Galena | Pony Express limestone member of the Wanakah formation. | | GS | 6 | Argentine mines, San Juan County, Colo | do | (?) | | GS | 70 | Blanding water tunnel, Abajos Mountains,
San Juan County, Utah. | do | (?) | Table 8.—Lead and uranium content of uranium ores used for age calculations [Analysts, R. G. Milkey, Harry Levine, and Frank Cuttitta, U. S. Geological Survey] | Sample no. | g Pb/g sample | g U/g sample | Sample no. | g Pb/g sample | g U/g sample | |---|--|--|---|--|--| | GS 10 11 12 13 14 15—1 15—2 16 17 18 19—1 19—2 20 21—1 22 23 24 28 30 31 33 | 0.0033
.0032
.0033
.00183
.00176
.0008
.00166
.00128
.000705
.00052
.0011
.000166
.00093
.000552
.0018
.000102
.000023
.000300
.000300 | 0.325
.322
.148
.11554
.1168
.311
.1910
.1443
.0740
.0036
.0463
.0086
.0047
.0077
.0064
.0341
.0022
.0031
.0046
.0256 | GS 34
35—1
39—3
40
41
42
43
47
48
49
50
51
63
64
65
66
LRS 20—2
64—1
64—1 | 0.000254
.000313
.000155
.000068
.000074
.000052
.0047
.000062
.000089
.00057
.000132
.0143
.0074
.0014
.00039 | 0.0228
.0209
.0021
.0043
.0049
.0031
.241
.0033
.0046
.0027
.0018
.0034
.559
.7346
.102
.0290 | ¹ The isotopic composition of the lead in vanadinite was used to correct for common lead present. Analysis in Nier, 1938. ² Age expressed to nearest 5 million years. ³ The Pb²⁰⁷/Pb²⁰⁸ ratio is appreciably affected by the assumed isotopic composition of the common lead present because of the large percentage of common lead in the samples. ⁴Mill pulp sample. Table 9.—Isotopic composition of lead from uranium ores and lead minerals of the Colorado Plateaus [Analyses by Carbide and Carbon Chemical Co., Y-12 Plant, Mass Asssy Laboratory, Oak Ridge, Tenn.] | | Atom percent abundance of lead isotopes | | | | | | | |-----------------------------------|--|--|--|--|--|--|--| | Sample | 204 | 206 | 207 | 208 | | | | | GS 1 GS 2 GS 5 GS 6 GS 7-1 GS 7-2 | - 1.38 ± .01
- 1.37 ± .03
- 1.363 ± .008
- 1.40 ± .01
- 1.37 ± .02
- 1.36 + .02 | 26.10 ± .05
26.07 ± .05
27.00 ± .05
25.29 ± .04
25.73 ± .08
25.78 + .05 | 20.97 ± .02
21.00 ± .03
20.86 ± .03
21.48 ± .03
21.09 ± .09
20.97 ± .18 | 51.55 ± .05
51.56 ± .08
50.77 ± .05
51.84 ± .04
51.81 ± .02
51.90 ± .07 | | | | | GS 8 | - 1.39 ± .05
- 1.38 ± .01
- 1.38 ± .01
029 ± .003
227 ± .004
820 ± .013
169 + .012 | 28.02 ± .08
26.20 ± .03
26.20 ± .03
92.92 ± .05
83.76 ± .03
55.57 ± .08
86.87 ± .02
88.40 ± .03 | 20.45 + .04
21.02 + .02
21.06 + .03
6.05 + .07
8.00 + .02
14.34 + .03
7.16 + .04
6.64 + .02 | 50.14 ± .05
51.41 ± .04
51.36 ± .04
1.00 ± .02
8.01 ± .02
29.27 ± .10
5.80 ± .02
4.82 ± .02 | | | | | GS 15—1 | 159 ± .009
034 ± .003
138 ± .003
746 ± .008
506 ± .026
- 1.08 ± .02
- 1.10 ± .01 | 91.40 ± .03
93.23 ± .01
88.59 ± .02
59.41 ± .11
71.51 ± .09
41.85 ± .03
39.11 ± .04 | 6.64 ± .03
5.87 ± .02
6.51 ± .02
13.35 ± .06
10.46 ± .02
17.28 ± .05
17.94 ± .03 | 1.80 ± .01
.871 ± .013
4.76 ± .02
26.50 ± .09
17.53 ± .09
39.80 ± .02
41.86 ± .04 | | | | | GS 20 | 184 ± .003
- 1.36 ± .02
696 ± .015
- 1.36 ±
.01
- 1.18 ± .01
768 ± .010 | 71.86 ± .05
87.26 ± .03
27.36 ± .03
60.29 ± .06
26.78 ± .05
57.36 ± .05
89.51 ± .10 | 10.43 + .03
6.77 + .01
20.76 + .03
13.36 + .07
20.91 + .03
18.72 + .04
13.48 + .04
6.86 + .06 | 17.21 ± .02
5.78 ± .02
50.52 ± .02
25.66 ± .03
43.64 ± .05
28.39 ± .03
3.53 ± .07 | | | | | GS 33 | 082 + .01
113 + .001
057 + .003
- 1.09 + .02
245 + .003
223 + .003 | 90.02 ± .02
90.02 ± .02
88.93 ± .03
92.53 ± .02
39.36 ± .02
84.20 ± .06
84.39 ± .05
83.33 + .03 | 6.65 ± .03
6.88 ± .01
5.71 ± .01
17.88 ± .02
7.51 ± .02
7.55 ± .03
7.90 ± .02 | 3.25 ± .02
4.08 ± .02
1.70 ± .01
41.67 ± .02
8.05 ± .05
7.84 ± .01
8.49 ± .02 | | | | | GS 43 | 042 ± .005
.614 ± .17
.588 ± .001
- 1.30 ± .01
608 ± .003
900 ± .007
839 ± .01 | 93.10 + .03
64.55 + .08
66.36 + .03
28.66 + .03
65.27 + .06
49.85 + .02
53.54 + .05 | 5.99 ± .02
12.13 ± .08
11.68 ± .02
20.46 ± .02
11.90 ± .03
15.46 ± .01
14.74 ± .04 | .872 ± .007
22.70 ± .08
21.37 ± .04
49.58 ± .03
22.23 ± .05
33.79 ± .02
30.88 ± .04 | | | | | GS 64 | 086 ± .001
257 ± .01
- 1.35 ± .01
- 1.36 ± .02
- 1.36 ± .003 | | 6.43 ± .03
6.28 ± .03
8.03 ± .05
21.03 ± .02
21.05 ± .08
21.12 ± .02 | | | | | | LRS 20—2 | 071 ± .007
176 ± .002
108 ± .003 | 92.76 + .04
86.58 + .03 | 1.6.04 + .02 | 6.14 ± .04
1.13 ± .03
5.94 ± .02
3.02 ± .02 | | | | | Vanadinite ² | - 1.37 | 25.20 21.27 | | 52.17 | | | | ¹ The limits of precision are calculated so that 95 percent of any new determination will fall within the limits given. ² Isotopic composition of lead in wulfenite and vanadinite in Nier, 1938. The probable error in the messurements on this sample is of the order of 0.5 percent. | | • | | |--|---|--| |